एन.सी.ई.आर.टी का पाठ्यक्रम भारतीय संस्कृति और शिक्षा के विपरीत

images (38)

डॉ. चन्द्रकान्त राजू

(लेखक प्रसिद्ध गणितज्ञ तथा उच्च अध्ययन संस्थान शिमला में टैगोर फेलो हैं।)

गणित को सामान्यत: एक कठिन विषय माना जाता है। अक्सर इसके लिए शिक्षकों को दोषी ठहराया जाता है या फिर विद्यार्थी ही स्वयं को दोषी मान लेते हैं। परंतु समस्या की जड़ तक पहुंचे तो लगता है कि वास्तविक समस्या वर्तमान में पढाए जाने वाले गणित के इतिहास और दर्शन को न समझने के कारण है। गणित सीखने और सिखाने में आने वाली समस्या के समाधान के लिए यह समझना आवश्यक है।

गणित की इन्हीं समस्याओं को रेखांकित करने के लिए हम यहाँ एन.सी.ई.आर.टी की कक्षा छह से लेकर नौ तक की पुस्तकों का विश्लेषण करेंगे। ये सभी पुस्तकें सभी भाषाओं में एन.सी.ई.आर.टी की वेबसाइट पर उपलब्ध हैं। अंग्रेजी से विभिन्न भाषाओं में किया गया अनुवाद कई स्थानों पर समझ से बाहर है। उदाहरण के लिए हिंदी अनुवादों में ऐसे शब्दों का प्रयोग किया गया है जो कि हिंदी के शब्दकोषों में भी नहीं मिलते हैं। इसलिए हम यहाँ अंग्रेजी पुस्तकों का ही उपयोग करेंगे। साथ ही चूँकि शिक्षा समवर्ती सूची का विषय है, इसलिए अनेक राज्यों में पुस्तकों में थोड़ा परिवर्तन मिलता है, परंतु वह अंतर काफी कम है और इस कारण उससे हमारे इस विश्लेषण के निष्कर्ष प्रभावित नहीं होते।

ज्यामिति का इतिहास और दर्शन
गणित को सार्वभौमिक मानना एक मिथक है। पूरी दुनिया में गणित कभी भी समान तरीके से नहीं पढ़ाया जाता रहा है। उदाहरण के लिए रिंड पैपिरस और बर्लिन पैपिरस में दिए गए प्रश्नों से साबित होता है कि 3700 वर्ष पहले गणित भिन्न तरीके से किया जाता था। वर्ष 1575 में जब जेसुइट जेनरल क्रिस्टोफ कलैवियस ने यूरोप के जेसुइट पाठ्यक्रम में व्यावहारिक गणित का विषय जोड़ा, इसके लिए उसने भास्कराचार्य की लीलावती सरीखे पारंपरिक भारतीय ग्रंथों और दसवीं से 13वीं शताब्दी के बीच यूरोप में भारतीय अंकगणित लाने वाले अल-ख्वारिज्मी की पुस्तक हिसाब-अल-हिंद का उपयोग किया था।

धागा या सुतली द्वारा गणित करने के मिश्र और भारत के पारंपरिक तरीकों में अनेक समानताएं थीं। हालांकि वे एन.सी.ई.आर.टी के गणित-शिक्षण की विधि से काफी भिन्न हैं जोकि पूरी तरह पश्चिमी परंपरा पर आधारित है। एन.सी.ई.आर.टी की कक्षा नौ की पुस्तक के नौवें अध्याय के 78वें पृष्ठ पर लिखा है – ‘गणित की यह शाखा (ज्यामिति) मिश्र, बेबिलोनिया, चीन, भारत, ग्रीस, इंका आदि सभी प्राचीन सभ्यताओं में विभिन्न तरीकों से पढ़ी जाती थी। इन सभ्यताओं के लोगों ने इसमें अनेक व्यावहारिक कठिनाईयों का अनुभव किया जिससे ज्योमिति का विविध तरीकों से विकास करने की आवश्यकता पड़ी।’ग्रीक से पहले अनेक लोगों द्वारा ज्यामिति किए जाने की सांस्कृतिक सर्वसमावेशिता का यह स्वीकार काफी कपटपूर्ण है, क्योंकि इसके ठीक बाद ज्यामिति के व्यावहारिक उपयोग को हतोत्साहित करते हुए लिखा है – ‘हमने यह भी पाया कि बेबिलोनिया जैसी अनेक सभ्यताओं में ज्यामिति केवल व्यवहारआधारित ज्ञान रहा और भारत और रोम में भी यही स्थिति थी। मिश्र के लोगों द्वारा विकसित ज्यामिति में मुख्यत: निष्कर्षों का कथन मात्र था, प्रक्रिया का कोई सामान्य नियम नहीं था। वास्तव में बेबिलोनिया और मिश्र के लोहों ने ज्यामिति का केवल व्यावहारिक प्रयोग मात्र किया था और इसे एक व्यवस्थित विज्ञान के रूप में विकसित करने में कोई काम नहीं किया था। लेकिन ग्रीक जैसी सभ्यताओं में तार्किकता पर जोर दिया गया था कि आखिर क्यों कोई नियम काम करते हैं। ग्रीक आविष्कृत तथ्यों की सत्यता को निगमनात्मक तर्कों से स्थापित करने में रूचि रखते थे।’इस प्रकार एन.सी.ई.आर.टी इस विचित्र आधार पर यह दावा करती है कि पूरे विश्व ने गलत किया, कि उनके द्वारा किया गया गणित व्यावहारिक था। आखिर एक अव्यवहारिक ज्ञान को पढ़ाने का औचित्य क्या है? इसमें आगे भी यही बताया गया है कि ज्यामिति करने का ग्रीकों का कथित निगमनात्मक तार्किकता का तरीका ही सही तरीका है। यह एक प्रकार से राउज बॉल जैसे गणित-इतिहासकारों द्वारा प्रस्तुत इतिहासों में पाए जाने वाले एक रंगभेदी टिप्पणी का ही विस्तार है – ‘गणित का इतिहास ग्रीकों से पहले के किसी भी ज्ञान-प्रवाह या कालखंड तक निश्चितता के साथ नहीं ले जाया जा सकता, हालांकि सभी प्रारंभिक जातियां गणना से परिचित थीं, परंतु तब तक नियम या तो बनाए नहीं गए थे या फिर वे विज्ञान का हिस्सा नहीं थे।’

इसी लेखक द्वारा लिखी गई एन.सी.ई.आर.टी पुस्तकों के पूर्व संस्करणों में इन्हीं रंगभेदी विश्वासों को जोरदार ढंग से प्रस्तुत करते हुए अलेक्जेंड्रिया, अफ्रीका के ग्रीक गणितज्ञों के काल्पनिक चित्रों को निरपवाद रूप से गोरों के रूप में दिखाया गया। मैंने इस बात को दशकों पहले उठाया था कि इनमें से अनेक गणितज्ञों के गोरे और काले होने का तो दूर, उनके अस्तित्व का भी कोई प्रमाण नहीं है और ये चित्र केवल स्टिरीयोटाइप काकेशियन जाति को दर्शाते हैं। इसके बाद इनमें से एक चित्र (यूक्लिड का) बदल दिया गया और उसके स्थान पर जो चित्र लगाया गया, वह नीढम की पुस्तक साइंस एंड सिविलाइजेशन इन चाइना के किसी भाग से लिया हुआ प्रतीत होता है। यह भी कपटपूर्ण ही है क्योंकि वास्तव में वह 1740 का एक उत्कीर्ण है जो कि एक गोरे व्यक्ति का ही है और इस प्रकार स्टिरीयोटाइप न होने पर भी कॉकेशियन ही है। यही आज की स्थिति है।

बहरहाल, यहाँ ऐसे अनेक ऐतिहासिक तथ्य विद्यार्थियों को पढ़ाए जा रहे हैं, जिनकी गंभीर समीक्षा किए जाने की आवश्यकता है। इस संबंध में यह ध्यान रखा जाना चाहिए कि इस रंगभेदी इतिहास का मूल वर्ष 1125 में क्रूसेडरत चर्च द्वारा कराए गए टोलिडो अनुवादों में छिपा है। उसे ही बाद में औपनिवेशिक इतिहास के रूप में आगे बढ़ाया गया। शताब्दियों तक इस छद्म इतिहास (क्रूसेडवाले, रंगभेदी और औपनिवेशिक इतिहास) का एकमात्र उद्देश्य ईसाइयों, पश्चिमी तथा गोरे लोगों को श्रेष्ठ साबित करना रहा है। इस झूठे इतिहास के बल पर भारत में जब औपनिवेशिक शिक्षा का सूत्रपात हुआ, तो उस समय यह पूरी तरह चर्च की शिक्षा ही थी, इसकी रचना औपनिवेशिक शिक्षितों के मन में अहम्मन्यता का भाव भरने के लिए बनाई गई थी और यह केवल भारत के बारे ही नहीं, बल्कि पूरे विश्व के लिए सच है, जैसा कि फ्रैंट्ज फैनन ने लिखा है कि इसने काले लोगों के अंदर हीनता का भाव भरा।

इसप्रकार पश्चिम की श्रेष्ठता का दावा (और इसप्रकार पश्चिमी ज्यामिती के वैश्विक होने का दावा) पढ़ाई जा रही ज्यामिती को न्यायसंगत ठहराने का मुख्य बिंदु है। ये दावे इस प्रकार हैं –
1. सभी अन्य लोगों द्वारा व्यावहारिक उद्देश्यों के लिए की गई ज्यामिति इसलिए हीन है क्योंकि वह एक व्यवस्थित विज्ञान नहीं था।
2. ग्रीकों ने कुछ अभिनव किया था, उन्होंने निगमनात्मक तर्कों से प्रमेयों को सिद्ध किया था और इनकी जानकारी 12वीं शताब्दी में यूरोप आने से पहले केवल उन्हीं को थी। और हाँ, इस अध्याय के शीर्षक ‘यूक्लिड की ज्यामिति का परिचय’में ही यह दावा अंतर्निहित है।
3. यूक्लिड नामक एक प्रारंभिक ग्रीक व्यक्ति ने इस निगमनात्मक साक्ष्यों वाली श्रेष्ठतर ज्यामिति को किया था और इस तरह की ज्यामिति को ही हमें विद्यालयीन बच्चों को पढ़ाना चाहिए न कि व्यावहारिक ज्यामिति को।

इनमें ऐतिहासिक मुद्दों (ग्रीक और यूक्लिड के मिथकों) तथा दार्शनिक मुद्दों (निगमनात्मक तर्कों के मिथकों और अंधविश्वास) का एक जानबूझ कर किया गड्डमड्ड है, केवल इसलिए कि इस मिथक और अंधविश्वास का मिश्रण इस खराब ज्यामितीय शिक्षण के लिए आवश्यक है जो कि एन.सी.ई.आर.टी की पुस्तकों में पढ़ाया जा रहा है। मिथक और अंधविश्वास का यह मिश्रण चर्च के प्रोपैगेंडा की प्रमुख पहचान है। उदाहरण के लिए, एक ऐतिहासिक जीसस का मिथक को बढ़ाया जाता है कि उसने बैकस के मिथक के विपरीत यौनसंबंधरहित प्रेम की वकालत की थी, जबकि इससे जीसस के मिथक को विनियोजित किया जाता है। अब इसमें कोई इतिहास को झुठलाएगा तो दर्शन पर चर्चा करके उसकी रक्षा की जाएगी और यदि कोई दर्शन को झुठलाएगा, तो उसके समर्थन में इतिहास का उपयोग किया जाएगा।

ज्यामिति के मिथक जिसमें ग्रीकों और विशेषकर यूक्लिड की ऐतिहासिकता शामिल है, पूरी तरह गलत हैं। ये केवल इस सीधे अर्थ में ही गलत नहीं हैं कि इनके होने का कोई साक्ष्य नहीं है, बल्कि ये इसलिए भी पूरी तरह गलत हैं कि इनके विरूद्ध साक्ष्य पर्याप्त से अधिक हैं।

सामान्य साक्ष्य बनाम औपचारिक साक्ष्य
पहली बात तो यह समझने की है कि निगमनात्मक तर्क पश्चिम की कोई अभिनव विधा नहीं है। यह भारत में पहले से ज्ञात थी। एक लोकायत को छोड़ कर भारतीय दर्शन की सभी शाखाएं इसे स्वीकार करती रही हैं। लोकायत इसे अपुष्ट मानता था। यह एक असंदिग्ध तथ्य है कि अन्य सभ्यताओं ने भी निगमनात्मक तर्क प्रमाण का उपयोग किया था, परंतु उन्होंने इसे प्रत्यक्ष तथ्यों अथवा परीक्षणों के साथ प्रयोग किया था, जैसा कि आज का विज्ञान भी करता है। न्याय दर्शन में प्रत्यक्ष को पहले प्रमाण के रूप में स्वीकार किया गया। पश्चिम अथवा चर्च की नूतनता इसमें है कि वे प्रत्यक्ष प्रमाण को खारिज कर देते हैं। पश्चिम में यह चर्च का अंधविश्वास रहा कि तर्क यानी लॉजिक सार्वभौमिक है क्योंकि गॉड भी इससे बंधा है। इसलिए फॉर्मल गणित के सभी प्रमाण बायनरी लॉजिक पर आधारित हैं। हिंदुस्तान में न्याय तथा वैशेषिक दर्शन प्रणाली में यह लॉजिक मिलता है। लेकिन हिंदुस्तान में असली अरस्तु के पहले से भी और भी अलग-अलग किस्म के लॉजिक पाए जाते हैं जैसे कि बौद्ध चतुषकोटि, जैन स्यादवाद इत्यादि। तो सांस्कृतिक तौर पर लॉजिक सार्वभौमिक नहीं है। तो असली बात यह निकलती है कि लॉजिक का आधार भी प्रत्यक्ष प्रमाण ही हो सकता है। अगर प्रत्यक्ष से देखा जाए तो हमें क्वांटम लॉजिक के बारे में भी सोचना होगा। तो लॉजिक का आधार भी प्रत्यक्ष प्रमाण ही हो सकता है और इसलिए लॉजिक बायनरी होना जरूरी नहीं है, जैसे पश्चिम के गणित दर्शन ने गलत माना है। इसलिए भी निगमन प्रत्यक्ष प्रमाण से कमजोर है।

असल में अनुमान ( निगमन, डिडक्शन) पर आधारित प्रमेय वैध ज्ञान ही नहीं होता, बल्कि सुविधाजनक प्रतिज्ञा से शुरुआत कर कोई भी बकवास प्रमेय सिद्ध किया जा सकता है। जैसे कि
(1) सभी जानवर के दो सींग होते हैं.
(2) खरगोश एक जानवर है.
(3) इसलिए खरगोश के दो सींग होते हैं.

निगमन यानी डिडक्शन एकदम सही है, लेकिन निष्कर्ष गलत है। हिंदुस्तानी दर्शन में खरगोश के सींग का का उदाहरण बहुत दिया जाता है। इस बकवास का डिडक्टिव प्रमाण दो प्रतिज्ञाओं पर आधारित है जिसमें से पहली प्रतिज्ञा कि सभी जानवर के दो सींग होते हैं, गलत है। यह गलत इसलिए है कि हम प्रत्यक्ष देख सकते हैं कि कई एक जानवर ऐसे हैं जिनके सींग नहीं है। लेकिन पश्चिमी औपचारिक गणित (formal mathematics) में प्रत्यक्ष पूरी तरह से वर्जित है तो हमें यह बात कैसे पता चलेगी? रसेल का कहना है कि डिडक्टिव प्रमाण किन्हीं भी प्रतिज्ञाओं से शुरू हो सकता है जो हमें हास्यास्पद (amusing) लगती हैं, और मुझे सभी जानवर के दो सींगों की बात अत्यंत हास्यास्पद लगती है।

इस प्रकार सामान्य साक्ष्य जो कि आधुनिक विज्ञान में भी पाया जाता है, पारंपरिक भारतीय गणित में भी मिलता है। सभी पारंपरिक सभ्यताओं में इसका प्रयोग मिलता है। इसलिए पश्चिम का वास्तविक दावा यह अंधविश्वास है कि शुद्ध डिडक्टिव यानी निगमित साक्ष्य या प्रत्यक्ष को वर्जित करने वाला साक्ष्य श्रेष्ठ है। यह एक झूठा दावा है जो कि एन.सी.ई.आर.टी की ज्यामिति की पुस्तकों में किया जाता है। समझने की बात यह है कि बिना प्रत्यक्ष साक्ष्य के 1+1 = 2 भी साबित करना कठिन हो जाएगा। पश्चिम की श्रेष्ठ विधि से इसे साबित करने में व्हाइटहेड और रसेल को 378 पृष्ठ लगे। मुझे एक भी व्यक्ति नहीं मिला है जिसने 1+1 = 2 साबित करने के लिए इन 378 पृष्ठों को पढ़ा हो। इसलिए एन.सी.ई.आर.टी की पुस्तकों में किया गया दावा कि निगमित साक्ष्य श्रेष्ठ होते हैं, केवल परिकल्पना मात्र ही है।

एन.सी.ई.आर.टी की पुस्तक में ज्यामिति का प्रारंभ बिंदु से किया गया है। कक्षा छह की एन.सी.ई.आर.टी की पुस्तक बिंदु की परिभाषा इस प्रकार देती है – ‘नुकीली पेंसिल से कागज पर एक डॉट बनाओ। नोक जितनी तीखी होगी, डॉट उतना सूक्ष्म होगा। लगभग अदृश्य सूक्ष्म डॉट से तुम बिंदु को समझ सकते हो।’इसी बात को अगले पृष्ठ पर फिर से जोर देकर कहा गया है – ‘जी हाँ, डॉट को अदृश्य होने की हद तक सूक्ष्म होना चाहिए।’यह प्रत्यक्ष को नकारने का मौलिक पाठ है। तो बिंदु एक ऐसी वस्तु है जिसे देखा जाना संभव नहीं होना चाहिए। क्या आप बिंदु को छू सकते हैं या उसका स्वाद ले सकते हैं, या उसे सुन या सूंघ सकते हैं? नहीं। तो इस श्रेष्ठ एन.सी.ई.आर.टी ज्यामिति में बिंदु हमारी इंद्रियों से अतीत है। यह वास्तविक नहीं है। तो बच्चे बिंदु को कैसे समझेंगे? वे नहीं समझेंगे, और इसलिए परीक्षा में उत्तीर्ण होने का उनके पास एक ही उपाय शेष होता है कि वे शिक्षक और पाठ्यपुस्तक पर अंधविश्वास करें।

कक्षा छह की यह पुस्तक मेटाफिजिकल नोशन में फिजिकल इनट्युशन को विकसित करने के नाम पर आगे बताती है कि एक बिंदु किसी स्थान या स्थिति को बताता है। सच में? पृथिवी अपने अक्ष पर आधे किलोमीटर प्रति घंटे की गति से घूमती है। यह सूर्य के चारों ओर 4.75 किलोमीटर की गति से घूमती है। यदि हम किसी कागज पर एक डॉट बनाएं तो एक सेकेंड बाद उसकी स्थिति कई किलोमीटर बदल चुकी होगी। पाठ्यपुस्तक फिजिकल इंट्युशन के नाम पर एबसोल्युट स्पेस की भ्रामक धारणा को पढ़ाने का प्रयास कर रहा है जो कि न्यूटोनियन भौतिकी की सैद्धांतिक असफलता साबित हो चुका है। एक ज्यामितीय बिंदु को पढ़ाने के लिए इस बकवास मेटाफिजिक्स को बताने की क्या आवश्यकता है? एन.सी.ई.आर.टी की कक्षा नौ की पुस्तक स्पष्ट करती है कि बिंदु को स्वयंसिद्ध के रूप में पारिभाषित किया जा सकता है। स्वयंसिद्ध तरीके को समझाने के लिए वह यूक्लिडियन स्वयंसिद्ध का उदाहरण देती है कि बिंदु वह है जिसका कोई पार्ट यानी अंग या हिस्सा नहीं है। कथित श्रेष्ठ स्वंयसिद्ध तरीका एक मूर्खतापूर्ण वाक्य से प्रारंभ होता है। इस स्वयंसिद्ध में पार्ट यानी अंग या हिस्सा परिभाषित नहीं है। इसी प्रकार एन.सी.ई.आर.टी की पुस्तक कहती है कि एक बिंदु का कोई आयाम नहीं होता, जबकि आयाम भी परिभाषित नहीं है। पाठ्यपुस्तक आगे सुझाव देती है कि पार्ट को कोई इस रूप में परिभाषित कर सकता है जिसका कोई क्षेत्रफल न हो। यह एक विचित्र सुझाव है क्योंकि क्षेत्रफल पहले ही बताया जा चुका है कि किसी वक्र रेखा से घिरे हिस्से को कहते हैं और वक्र रेखा बिंदुओं से बनी है। तो दी गई परिभाषा पर प्रश्न खड़े होते हैं। इसलिए एक बार फिर यह दोहराना पड़ रहा है कि यह स्वयंसिद्ध प्रक्रिया भी निगमन पर उतना आधारित नहीं है जितना कि प्रत्यक्ष को नकारने पर। इसलिए कक्षा नौ की पुस्तक आगे कहती है ‘इसलिए एक बात को परिभाषित करने के लिए तुम्हें दूसरी कई चीजों की परिभाषा करनी होगी और तुम इससे परिभाषाओं की एक बिना किसी सिरे वाली श्रृंखला में उलझ जाओगे। इसी कारण से सभी गणितज्ञ इस पर सहमत हैं कि कुछ ज्यामितीय शब्दों को अपरिभाषित ही छोड़ देना चाहिए।’इसके बाद पुस्तक लिखती है ‘इसलिए ज्यामिति में हम एक बिंदु या एक लाइन या एक समतल (यूक्लिड के शब्दों में समतल सतह) आदि को अपरिभाषित ही मानते हैं।Ó इस प्रकार फार्मल गणित फार्मल गणितज्ञों के समुदाय के सामाजिक मान्यता मात्र ही है।

Comment:

Kuponbet Giriş
betgaranti giriş
Teknik Seo
betnano giriş
betpark giriş
betnano giriş
betnano giriş
grandpashabet giriş
grandpashabet giriş
grandpashabet giriş
grandpashabet giriş
betnano giriş
betnano giriş
grandpashabet giriş
grandpashabet giriş
betpark giriş
betpark giriş
vaycasino giriş
vaycasino giriş
grandpashabet giriş
vaycasino giriş
betnano giriş
betnano giriş
vdcasino giriş
grandpashabet giriş
grandpashabet giriş
vaycasino giriş
vaycasino giriş
grandpashabet giriş
grandpashabet giriş
betnano giriş
betnano giriş
grandpashabet giriş
grandpashabet giriş
grandpashabet giriş
grandpashabet giriş
grandpashabet giriş
grandpashabet giriş
grandpashabet giriş
vaycasino giriş
grandpashabet giriş
vaycasino giriş
betnano giriş
grandpashabet giriş
grandpashabet giriş
betebet giriş
grandpashabet giriş
vaycasino giriş
betebet giriş
betnano giriş
grandpashabet giriş
vaycasino giriş
parmabet giriş
grandpashabet giriş
betpas giriş
grandpashabet giriş
grandpashabet giriş
pusulabet giriş
parmabet giriş
parmabet giriş
betnano giriş
betparibu giriş
grandpashabet giriş
betlike giriş
safirbet giriş
safirbet giriş
betparibu giriş
betlike giriş
parmabet giriş
betpark giriş